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1. Introduction

Taking the point of view that the BFSS Matrix model [2] can be regarded as a theory

of coincident M-theory gravitons, we showed in [3] that using the action for coincident

gravitons proposed therein it is possible to go beyond the linear order approximation of [4].

This action was successfully used in [3, 5] for the study of giant gravitons [6, 7] in AdSm ×
Sn backgrounds, which are not linear perturbations to Minkowski. Moreover, in the M-

theory maximally supersymmetric pp-wave background [8], this action, besides reproducing

the BMN Matrix model [9], predicts a new quadrupolar coupling to the M-theory 6-form

potential, which supports the so far elusive fuzzy 5-sphere giant graviton solution [10].

In this paper we will focus on Type II pp-wave Matrix models. These models share

with the BMN Matrix model the removal of the flat directions and the existence of a large

class of giant graviton supersymmetric vacua. We will mainly concentrate on two back-

grounds: the Type IIA background that is obtained from the maximally supersymmetric

pp-wave background of M-theory after dimensional reduction [11], and the maximally su-

persymmetric Type IIB pp-wave background [12]. We will simply refer to them as the

Type IIA and Type IIB pp-wave backgrounds.

Several approaches have been taken in the literature for the study of Type II pp-wave

Matrix models. Matrix String theory in the Type IIA pp-wave background has been studied

in [13, 14]. The approach in [13] is to start from the supermembrane action in the maximally

supersymmetric pp-wave background of M-theory, and then use the correspondence law

– 1 –



J
H
E
P
0
8
(
2
0
0
6
)
0
2
2

of [15] to reduce it to ten dimensions. Reference [14] constructs it, in turn, from the

BMN Matrix action, using the 9-11 flip [16]. Matrix String models in more general pp-

wave backgrounds have also been considered in [17], by studying certain deformations of ten

dimensional N = 1 SYM. These models include the BMN Matrix model when dimensionally

reduced to one dimension, as well as the Matrix String theory of [13, 14], in two dimensions.

In this reference a possible deformation of the IKKT Matrix String theory [18] which

could be suitable for the study of Type IIB pp-wave backgrounds was also considered.

General features about a Matrix String theory in the maximally supersymmetric pp-wave

background of Type IIB were also discussed in [19]1. A Matrix String theory for this

background was however not explicitly constructed till reference [1].

The approach taken in [1] is to regularize the light-cone 3-brane action in the Type IIB

pp-wave background, in close analogy to the derivation in [21] of the BMN Matrix model

from the light-cone supermembrane action. The light-cone 3-brane carries N units of light-

cone momentum, and some of its vacua are finite size 3-branes with zero light-cone energy,

i.e. giant gravitons2. In close analogy to the description in [9, 1] proposes a description of

the 3-sphere vacua in terms of N expanding gravitons, each carrying one unit of light-cone

momentum, the so-called tiny gravitons. The resulting Matrix model, a one dimensional

U(N) gauge theory, is referred as the Tiny Graviton Matrix theory.

Keeping in mind that the BMN Matrix model can be regarded as a theory of coincident

M-theory gravitons [10], which expand by Myers dielectric effect into the 2-sphere and 5-

sphere giant graviton vacua of the theory, one would expect that the Tiny Graviton Matrix

theory of [1] could, in the same fashion, be regarded as a theory of Type IIB coincident

gravitons, which expand by dielectric effect into the 3-sphere vacua. The tiny gravitons

of [1] would then simply be coincident Type IIB point-like gravitons. In fact, it was

shown in [23, 24] that the giant graviton solutions of the AdS5 × S5 and AdS3 × S3 × T 4

Type IIB backgrounds can be described microscopically using the action for coincident

gravitons constructed in [23]. This action contains the right multipole moment couplings to

explain the expansion of the gravitons into fuzzy 3-spheres or fuzzy cylinders, respectively.

Moreover, this action is a U(N) gauge theory, in which the non-Abelian vector field is

associated to (wrapped) D3-branes “ending” on the gravitons3. In this construction each

graviton carries one unit of light-cone momentum, and the enhancement from the U(1)

gauge theory, for a single graviton, to a U(N) gauge theory, for N gravitons, takes place

identically than in a system of coincident D-branes. This is in agreement with the discussion

in [1], and with the results in [22].

In this article we pursue further the line of research initiated in [10], and show that the

Matrix models that have been constructed in the literature in Type II pp-wave backgrounds

can be obtained from the actions for Type II coincident gravitons constructed in [3, 25, 23].

1See also [20].
2Fixing the light-cone gauge corresponds to going to the rest frame of the giant graviton. There is

another solution consisting on a zero-size 3-brane with the same energy, i.e. a point-like graviton.,SS
3The D3-branes are wrapped on two isometric directions of the action, which in the pp-wave background

are the light-cone direction and a combination of the two S1 fibres in the decomposition of the 3-spheres of

the background as U(1) bundles over S2.
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Matrix String theory in the Type IIA pp-wave background [13, 14] is reproduced exactly,

whereas in Type IIB we obtain a new Matrix model which supports fuzzy 3-sphere giant

graviton solutions with the right behavior in the large N limit. We discuss with some

detail the relation between this Matrix model and the Tiny Graviton Matrix theory of [1]

throughout the paper.

The article is organized as follows. section 2 is devoted to the study of the type IIA pp-

wave Matrix model. After briefly reviewing the background in subsection 2.1 we present

the action describing Type IIA coincident gravitons in subsection 2.2. This action is a

completion of the truncated action derived in [3, 25], which, as we discuss, is not suitable

for the study of this background. We particularize the action constructed in subsection 2.2

to the Type IIA pp-wave background in subsection 2.3 and show the perfect agreement

with the matrix actions of [13, 14]. Finally in subsection 2.4 we discuss some of the fuzzy

sphere vacuum solutions. section 3 is devoted to the study of the Type IIB pp-wave Matrix

model. We start in subsection 3.1 by rewriting the background in coordinates adapted to

our construction. In subsection 3.2 we recall the action for type IIB coincident gravitons

of [23]. We see that this action is adequate for the study of the pp-wave background. In

subsection 3.3 we present our proposal for the Matrix model. Finally we summarize in

subsection 3.4 some of the fuzzy 3-sphere vacua of the model. We end in section 4 with

some conclusions.

2. The Type IIA Matrix Model

2.1 The background

We consider the Type IIA pp-wave background:

ds2 = −2dx+dx− − β(dx+)2 + dx2
1 + . . . + dx2

8 ,

C
(1)
+ = −1

3
µx4 , C

(3)
+ij = −µ

3
εijkx

k ; i, j, k = 1, 2, 3 (2.1)

which is obtained by reducing along an isometric SO(6) direction the maximally supersym-

metric pp-wave background of M-theory [11]. This background preserves 24 of the original

32 supersymmetries [22, 26]. Here

β = (
µ

3
)2(x2

1 + . . . + x2
4) + (

µ

6
)2(x2

5 + . . . + x2
8) . (2.2)

We are interested in constructing a Matrix model describing the dynamics of gravita-

tional waves in this background, in the sector with momentum p+ = −p− = N/R.

2.2 The action for Type IIA gravitons

An action describing coincident gravitational waves in Type IIA backgrounds has been

constructed to linear order in the background fields in [25]. This action is, however, not

suitable for the study of the Type IIA background (2.1), because (C
(1)
+ )2 contributes with

a quadratic power of the x4 transverse scalar and therefore gives a contribution to the

leading order expansion of the action (see next subsection). In this section we construct

– 3 –



J
H
E
P
0
8
(
2
0
0
6
)
0
2
2

an action for Type IIA waves that goes beyond the linear approximation, and is suitable

for the study of the Type IIA pp-wave background (2.1) to the desired order.

Our starting point is the action for coincident M-theory gravitational waves constructed

in [3]. This action goes beyond the linear order approximation, and has the same regime

of validity of Myers action for coincident D-branes [27]4:

S = −
∫

dτ STr
{

k−1

√

−
[

gµνDτXµDτXν + Eτi(Q−1 − δ)ikEkjEjτ

]

detQ
}

+

+

∫

dτ STr
{

P
[

k−2k(1)
]

− iP
[

(iX iX)C(3)
]

+
1

2
P

[

(iX iX)2ikC
(6)

]

+ . . .
}

(2.3)

where

Eµν = gµν + k−1(ikC
(3))µν , Qi

j = δi
j + ik[Xi,Xk]Ekj , i = 1, . . . 9 . (2.4)

Here we have taken units in which the tension of a single graviton is equal to one. In this

action the direction of propagation of the waves appears as a special isometric direction,

with Killing vector kµ. k2 and k(1) are defined as k2 = gµνkµkν and k
(1)
µ = gµνkν . k−2k(1) is

then the momentum operator along the isometric direction. Consistently with this isometry

the pull-backs into the worldvolume are taken with gauge covariant derivatives [28]

DτX
µ = ∂τX

µ − k−2kν∂τXνkµ . (2.5)

In this way the dependence on the isometric direction is effectively eliminated from the

action. This action is in fact a gauge fixed action in which the U(N) vector field, associated

to M2-branes (wrapped on the direction of propagation) ending on the waves, has been

taken to vanish, Aτ = 0. In this gauge U(N) covariant derivatives reduce to ordinary

derivatives, and gauge covariant derivatives can be defined using ordinary derivatives as

in (2.5).

We can obtain the action describing coincident Type IIA gravitons by reducing the

action (2.3) along a transverse direction. Applying the dimensional reduction rules to the

eleven dimensional metric it is clear that quadratic powers of the RR 1-form potential

show up. Given that in the pp-wave background C
(1)
+ = −µx4/3, these couplings have to

be included in order to construct a Matrix model which contains quadratic powers of the

transverse scalars. For simplicity we restrict ourselves to backgrounds in which the NS-NS

2-form potential vanishes, all components but the time component and the component on

the direction of propagation of the RR 1-form potential are zero, and ki = 0. This is indeed

a suitable truncation for the pp-wave background (2.1).

We obtain for the BI action

SBI = −
∫

dτ STr
{ 1

√

k2 + e2φ(ikC(1))2

√

(

l1 − (k2 + e2φ(ikC(1))2)[A,X]2
)

detQ

.

√

−
[

gµνDτXµDτXν +
k2e2φ

k2 + e2φ(ikC(1))2

(

C
(1)
µ DτXµ + F

)2]}

(2.6)

4We refer the reader to reference [3] for more details.
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Here

Eµν = gµν +
eφ

√

k2 + e2φ(ikC(1))2
(ikC

(3))µν

Qi
j = δi

j + i[Xi,Xk]e−φ
√

k2 + e2φ(ikC(1))2Ekj (2.7)

and i now runs from 1 to 8. A is the scalar field that comes from the reduction of the

eleventh transverse direction and F is its field strength. F forms an invariant field strength

with the pull-back of the RR 1-form potential, and therefore A is associated to D0-branes

ending on the waves. The first square root in (2.6) comes from the reduction of the

determinant of the nine dimensional Q matrix, whereas the second square root comes from

the reduction of the pull-back of the metric. We should mention that in this action we

have made a further truncation. We have omitted those terms coming from the reduction

of Eτi(Q
−1 − δ)ikEkjEjτ . This is justified because these terms contribute to higher order

on the transverse scalars.

Dimensionally reducing the CS action we get:

SCS =

∫

dτSTr
{

P
[

k−2k(1)
]

+
e2φikC

(1)

k2 + e2φ(ikC(1))2

(

P
[

C(1)
]

+ F
)

− iP
[

(iX iX)C(3)
]

+
1

2
P

[

(iX iX)2ikB
(6)

]

+ . . .
}

(2.8)

From here we see that the Type IIA gravitons propagate along the same isometric di-

rection, consistently with the fact that the isometry is inherited when we reduce along

a transverse direction. We also find dielectric couplings to the RR 3-form and the NS-

NS 6-form potentials, which would be responsible for the expansion of the gravitons into

D2-branes and NS5-branes in suitable backgrounds. We have omitted couplings to higher

order background potentials and products of different background fields contracted with

the non-Abelian scalars because they will not play a role in the pp-wave background that

we consider in this paper.

2.3 The Matrix model

We can now particularize the actions (2.6) and (2.8) to the Type IIA pp-wave back-

ground (2.1). We are interested in describing waves with non-vanishing light-cone mo-

mentum p−. However the actions (2.6) and (2.8) are singular for the choice kµ = δµ
−, since

k2 = g−− vanishes in the pp-wave background. A natural way to regularize the action is

to undo the Penrose limit, keep the waves propagating in the ψ-direction of the original

eleven dimensional AdS background, and finally take the Penrose limit L → ∞. Since,

in the notation of (2.1), the light-cone coordinates are related to the AdS time and ψ

coordinate through

x+ =
3

2µ
(t + ψ) , x− =

µL2

3
(t − ψ) , (2.9)

p− and pψ are related through

pψ = −p−
µL2

3
. (2.10)
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If we take the gravitons propagating along the ψ direction with momentum pψ = N we

have that p− = −N/R if R is related to the AdS radius and the mass scale as R = µL2/3.

Therefore, we take kµ = δµ
ψ in the actions (2.6) and (2.8). Moreover, we take light-cone

gauge and identify x+ with the worldline time. Expanding the action (2.6) to leading order

(in λ = 2πα′) we find5

SBI = −µ

3

∫

dx+STr
{

l1 − L2

4
[X,X]2 − L2

2
[A,X]2 +

i

2
εijkX

iXjXk +
9β̃2

4µ2L2
− 9

2µ2L2
Ẋ2

− 9

2µ2L2
F

(

F − µ

3
X4

)}

(2.11)

and

SCS =

∫

dx+STr
{µ

3

(

1 − 9β̃

4µ2L2

)

− 1

2L2
X4F − i

µ

6
εijkX

iXjXk
}

(2.12)

where

β̃ = β − µ2

9
(X4)2 , (2.13)

i = 1, 2, 3 and we denote the non-Abelian transverse scalars with capital letters.

Therefore, the final action reads

S =

∫

dx+STr
( 1

2R
Ẋ2− β̃

2R
+

R

4
[X,X]2+

R

2
[A,X]2+

1

2R
F

(

F − 2µ

3
X4

)

−i
µ

3
εijkX

iXjXk
)

(2.14)

where we have substituted R = µL2/3. This action is in perfect agreement with the results

in [13] and [14] when one makes the truncation ∂σXµ = 0 (see the discussion below).

Indeed, it was shown in [29, 25] that Matrix String theory has an alternative interpre-

tation as describing the dynamics of coincident Type IIA gravitons. The idea in [29, 25]

is that since Matrix String theory describes string states with fixed light cone momentum,

it could, in some limit, effectively describe gravitons. Explicitly, Matrix String theory is

constructed by compactifying M-theory on the 9th direction, and then performing the 9-

11 flip [16]. However, when one considers weakly curved backgrounds the 9th direction

appears as a special isometric direction on which neither the background fields nor the

currents depend. This is translated into a reduced, SO(8) transverse rotationally invariant

action. One can however rewrite the action in terms of ten dimensional pull-backs into a

one dimensional worldvolume by using the techniques of gauged sigma models.

The 9th direction is interpreted as the spatial worldsheet direction of the string, σ. If

one makes the truncation ∂σXµ = 0 and let kµ be the Killing vector pointing along the 9th

direction one can achieve invariance under the local isometric transformations generated by

kµ by introducing gauge covariant derivatives as in (2.5). Using gauge covariant pull-backs,

constructed with these gauge covariant derivatives, it is possible to eliminate the pull-back

of the isometric coordinate, and to reproduce the isometric couplings in the Matrix String

action in a manifestly covariant way (see [25]).

5Note that in our units λ = 1. This approximation is however the usual one taken in non-Abelian BI

actions (see [27]), based on the fact that these actions are good to describe the system of branes when they

are distances away less than the Planck length.
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Consistently with this discussion we reproduce, using the action for Type IIA gravitons,

the subsector of the Matrix String theory constructed in [13, 14] satisfying ∂σXµ = 0.

2.4 The fuzzy sphere solutions

The Matrix model (2.14) admits fuzzy 2-sphere giant graviton solutions. One is a static

fuzzy sphere located at x4 = . . . = x8 = 0, identical to the 2-sphere solution of the BMN

Matrix model but from the fact that it preserves just eight supersymmetries due to the

toroidal compactification from M-theory [13]. A more general solution is considered in [14]

in which the static fuzzy sphere is located in an arbitrary point in the x4 direction, which

preserves as well eight supersymmetries. In this section we are going to show however that

the x4 location and the radius of the fuzzy 2-sphere must satisfy the relation

x4r = −m
√

N2 − 1

2N
, (2.15)

where m is an integer, in agreement with the results found in [30] in the large N limit.

Let us first discuss the solutions in [30]. In this reference spherical D2-brane giant

graviton solutions are studied using a test D2-brane in the pp-wave background, carrying

light-cone momentum. It is found that 2-sphere solutions with non-vanishing x4 are possible

when a magnetic field inducing D0-brane charge in the configuration is switched on. Then

the radius of the spherical D2-brane and its x4 location must satisfy the relation

x4r = −m/2 , (2.16)

where m is the D0-brane charge induced in the worldvolume. This result is supported by

a microscopical calculation in terms of non-Abelian m D0-branes expanding into the fuzzy

2-sphere by dielectric effect.

We now show that a similar condition for the radius of the spherical fuzzy D2-brane

and its x4 location is predicted within the Matrix model description.

Let us start by taking in (2.14) the fuzzy 2-sphere ansatz:

Xi =
r√
CN

J i , i = 1, 2, 3 (2.17)

with J i the generators of SU(2) in an N dimensional representation (in our notation

[J i, Jj ] = 2iεijkJk) and CN the quadratic Casimir in this representation. Take as well

X4 = constant and Abelian (we will denote it as x4), X5 = . . . = X8 = 0, and F Abelian.

We then obtain an action

S = − N

2R

∫

dx+
[(µ

3
− 2Rr√

N2 − 1

)

r2 − F
(

F − 2

3
µx4

)]

, (2.18)

and, Legendre transforming F , a Hamiltonian

H =
N

2R

[(µ

3
− 2Rr√

N2 − 1

)2
r2 +

(µx4

3
+

pAR

N

)2]

, (2.19)

where pA is the conjugate momentum of the scalar field A. Recalling that A has its origin

on the eleventh transverse scalar, pA is the momentum along the eleventh direction, which

is interpreted in ten dimensions as D0-brane charge.
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Now, minimizing with respect to r and x4, we find two zero energy solutions, one with

zero radius, the point-like graviton, and a second one with

r =
µ
√

N2 − 1

6R
, (2.20)

which corresponds to the giant graviton. Both solutions are located at

x4 = −3mR

µN
, (2.21)

for m D0-brane charge.

Therefore, microscopically, the radius and the position in x4 of the giant graviton must

be related through

x4r = −m
√

N2 − 1

2N
. (2.22)

This reproduces the relation (2.16) of [30] in the large N limit. Moreover, the Hamil-

tonian (2.19), derived using the Matrix model, coincides in the large N limit with the

Hamiltonian describing the spherical D2-brane with momentum N and D0-brane charge

m of [30], as we now show.

A classical spherical D2-brane in the pp-wave background (2.1) with x− = x−(x+)

sitting at a constant x4 at x5 = . . . = x8 = 0, and carrying D0-brane charge m, is described

by a Lagrangian

S = −4πT2

∫

dx+
{

√

µ2

9

(

r2 + (x4)2
)

+ 2ẋ−

√

r4 +
m2

4
− µ

3

(

r3 − m

2
x4

)}

, (2.23)

where we have substituted

Fθφ =
m

2
sin θ , (2.24)

which is the magnetic field inducing m D0-brane charge in the worldvolume.

Legendre transforming with respect to ẋ− we arrive at the following Hamiltonian in

terms of the canonically conjugated momentum p−

H = −p−
2

[(µ

3
+

4πT2r

p−

)2
r2 +

(µx4

3
− 2πT2m

p−

)2]

. (2.25)

This expression coincides exactly in the large N limit with the microscopical Hamilto-

nian (2.19), when we take into account that in our units 2πT2 = 1.

The minimum energy, E = 0, is reached when:

r = − µp−
12πT2

, x4 =
6πT2m

µp−
, (2.26)

which also agree exactly in the large N limits with expressions (2.20) and (2.21).

We can conclude that the classical 2-sphere solution found in [30] is correctly repro-

duced within the Matrix model description. Since this 2-sphere giant graviton solution

carries both momentum charge (in our notation, N), and D0-brane charge (in our nota-

tion, m) it is possible to describe it microscopically either as N gravitational waves with

– 8 –
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D0-brane charge m, expanding due to their (dielectric) coupling to the RR 3-form po-

tential, or as m D0-branes moving along the x− direction with momentum N (expanding

as well due to their coupling to the 3-form potential). This explains why the microscop-

ical description of [30] in terms of D0-branes agrees with the Matrix model description.

The Matrix model provides however a unified set-up for the microscopical study of giant

graviton configurations in both Type II and M theories.

3. The Type IIB Matrix Model

In this section we propose a Matrix model for the maximally supersymmetric pp-wave

background of Type IIB. This Matrix model is constructed from the action describing

coincident Type IIB gravitons.

3.1 The background

We start by recalling the form of the maximally supersymmetric pp-wave background of

Type IIB [12]. It arises as the Penrose limit of the AdS5 × S5 background

ds2 = L2(− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2
3 + dθ2 + cos2 θdψ2 + sin2 θdΩ̃2

3)

C(4)
τα1α2α3

= −L4 sinh4 ρ
√

gα , C
(4)
ψγ1γ2γ3

= −L4 sin4 θ
√

gγ (3.1)

where {αi} and {γi} are, respectively, the angles parametrizing the 3-spheres contained in

the AdS and S parts of the geometry:

dΩ2
3 = dα2

1 + sin2 α1(dα2
2 + sin2 α2dα2

3) ,

dΩ̃2
3 = dγ2

1 + sin2 γ1(dγ2
2 + sin2 γ2dγ2

3) , (3.2)

and
√

g is the volume element on the unit 3-sphere.

Defining

x+ =
1

2µ
(τ + ψ) , x− = µL2(τ − ψ) , ρ =

r

L
, θ =

y

L
(3.3)

and taking L → ∞ one gets [31]

ds2 = −2dx+dx− − µ2(r2 + y2)(dx+)2 + dr2 + r2dΩ2
3 + dy2 + y2dΩ̃2

3

C
(4)
+α1α2α3

= −µr4√gα , C
(4)
+γ1γ2γ3

= −µy4√gγ . (3.4)

We are interested in constructing a Matrix model describing the dynamics of gravitons

in this background in the sector with momentum p+ = −p− = N/R. In order to do this

it is convenient to describe the 3-spheres in (3.4) as Hopf-fiberings, p : S3 → S2, using the

round metric for S3:

dΩ2
3 =

1

4

(

(dχ − A)2 + dΩ2
2

)

(3.5)

where, in Euler angles:

A = − cos χ1dχ2 , dΩ2
2 = dχ2

1 + sin2 χ1dχ2
2 . (3.6)
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Using now Cartesian coordinates to describe the 2-spheres we can write the background

metric and potentials (3.4) as

ds2 = −2dx+dx− − µ2(r2 + y2)(dx+)2 + dr2 +
r2

4

(

(dχ − A)2 + dx2
1 + dx2

2 + dx2
3

)

+

+dy2 +
y2

4

(

(dχ̃ − Ã)2 + dz2
1 + dz2

2 + dz2
3

)

,

C
(4)
χ+ij =

1

8
µr4εijkx

k , i, j = 1, 2, 3 ,

C
(4)
χ̃+ab =

1

8
µy4εabcz

c , a, b = 1, 2, 3 (3.7)

where ~x and ~z parametrize points in R
3. In these coordinates:

A = − x3

x2
1 + x2

2

(x1dx2 − x2dx1)

Ã = − z3

z2
1 + z2

2

(z1dz2 − z2dz1) . (3.8)

Note that in these coordinates we have reduced the explicit invariance of the back-

ground from U(1)2 × (SO(4))2 to U(1)2 × (SO(3) × U(1))2, though the whole invariance

should still be present in a non-manifest way.

3.2 The action for Type IIB gravitons

The action describing coincident Type IIB gravitons was constructed in [23]. Like the

action for Type IIA gravitons, it goes beyond the linear order approximation and has the

same regime of validity than Myers action for coincident D-branes. It is given by:

S = −
∫

dτ STr
{

k−1

√

−
[

gµνDτXµDτXν + Eτi(Q−1 − δ)ikEkjEjτ

]

detQ
}

+

+

∫

dτ STr
{

P
[

k−2k(1)
]

− iP
[

(iX iX)ilC
(4)

]

+ . . .
}

(3.9)

where

Eµν = gµν − k−1l−1eφ(ikilC
(4))µν , Qi

j = δi
j + i[Xi,Xk]e−φklEkj , i = 1, . . . 7

(3.10)

and the gauge covariant derivatives are defined as

DτX
µ = ∂τX

µ − k−2kν∂τX
νkµ − l−2lν∂τXν lµ . (3.11)

A detailed discussion of this action can be found in [23]. Like the action for Type IIA

gravitons, the direction of propagation appears as a special isometric direction, with Killing

vector kµ. In this case however there is a second isometric direction, with Killing vector

lµ, which is inherited from the T-duality transformation involved in the construction. Al-

though in the Abelian limit the dependence in this direction can be restored, this does

not happen in the non-Abelian case (see the discussion in [23]). Note that it is precisely

due to the existence of this second isometry that the RR 4-form potential can couple in
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the action (3.9). Otherwise the dielectric couplings in (3.9) and in (3.10) would not be

possible6. Therefore, the action (3.9) is suitable for the study of gravitons which propagate

in backgrounds with isometric directions. This is indeed the case in the pp-wave back-

ground, where there are two isometric directions associated to the two fibres in the Hopf

decomposition of the transverse 3-spheres.

The action (3.9) is, again, a gauge fixed action, in which the U(N) vector field, asso-

ciated in this case to D3-branes wrapped on the two isometric directions, is set to zero. In

this gauge U(N) covariant derivatives reduce to ordinary derivatives, as in (3.11).

3.3 The Matrix model

We can now particularize the action (3.9) to the background (3.7). As in subsection 2.3

we take light-cone gauge and identify x+ with the worldline time. We take as well the

gravitons propagating in the ψ direction, i.e. kµ = δµ
ψ. Again, this is equivalent to taking

the gravitons with momentum p−, since pψ and p− are related through the change of

coordinates (3.3) as

pψ = −µL2 p− . (3.12)

Therefore we describe the sector of the theory with light-cone momentum p− = −N/R

taking pψ = N and R = µL2. Doing this we avoid the singularities that arise in the action

if we simply take kµ = δµ
−, due to the fact that k2 = g−− = 0.

In order to identify the second isometric direction we change coordinates

ξ =
χ + χ̃

2
, ξ̃ =

χ − χ̃

2
(3.13)

and take lµ = δµ
ξ . This choice preserves the Z2 symmetry χ ↔ χ̃, r ↔ y, x ↔ z of the

background. Then we have

C
(4)
ξ+ij =

1

8
µr4εijkx

k , C
(4)
ξ+ab =

1

8
µy4εabcz

c . (3.14)

These two potentials couple in both the CS and BI parts of the action. This will allow

the existence of zero energy solutions corresponding to expansions of the gravitons into the

two 3-spheres contained in the geometry.

We make the ansatz that the radii of the two 3-spheres are commutative, consistently

with the symmetries of the background, and we restrict the use of capital letters for the

non-commutative scalars. We find for the CS action:

SCS = µ

∫

dx+STr
{

l1 − 1

4L2
(r2 + y2) − i

r4

16
εijkX

iXjXk − i
y4

16
εabcZ

aZbZc
}

, (3.15)

and for the BI action

SBI = −µ

∫

dx+STr
{

l1 +
r2 + y2

4L2
− 1

2µ2L2

(

ṙ2 + ẏ2 +
r2

4
Ẋ2 +

y2

4
Ż2

)

+

6One could expect in principle a coupling of the form (iX iX)ikC(4) in the CS action. However, such a

coupling does not arise in the T-duality transformation involved in the construction of (3.9), and, moreover,

it vanishes in the AdS5 × S5 background. Indeed, in this background, the coupling that is responsible for

the existence of the dual giant graviton solution is (iX iX)ilC
(4) [23].
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− 1

2µ2L2
(

r2y2

r2 + y2
)
(

˙̃ξ − AiẊ
i − ÃaŻ

a

2

)(

˙̃ξ − AjẊ
j − ÃbŻ

b

2

)

+

− 1

256
L2(r2 + y2)

(

r4[X,X]2 + y4[Z,Z]2 + 2r2y2[X,Z]2
)

+

+i
r4

16
εijkX

iXjXk + i
y4

16
εabcZ

aZbZc
}

(3.16)

where we have expanded the action (3.9) to leading order and A ≡ Aidxi, Ã ≡ Ãadza.

Notice that ξ̃ only appears in the quadratic term in the second line of the action.

Integrating it out through its equation of motion we finally get

SBI = −µ

∫

dx+STr
{

l1 − 1

2µ2L2

(

ṙ2 + ẏ2 +
r2

4
Ẋ2 +

y2

4
Ż2

)

+
r2 + y2

4L2
+

− 1

256
L2(r2 + y2)

(

r4[X,X]2 + y4[Z,Z]2 + 2r2y2[X,Z]2
)

+

+i
r4

16
εijkX

iXjXk + i
y4

16
εabcZ

aZbZc
}

(3.17)

Combining (3.17) and (3.15) and taking into account that R = µL2 we can finally read

our proposal for the Type IIB Matrix model:

S =

∫

dx+STr
{ 1

2R

(

ṙ2 + ẏ2 +
r2

4
Ẋ2 +

y2

4
Ż2

)

− µ2

2R
(r2 + y2) +

+
1

256
R(r2 + y2)

(

r4[X,X]2 + y4[Z,Z]2 + 2r2y2[X,Z]2
)

+

−i
µ

8
r4εijkX

iXjXk − i
µ

8
y4εabcZ

aZbZc
}

(3.18)

Notice that this action is symmetric under the interchange r ↔ y, X ↔ Z, like the

background.

The Type IIB Matrix theory given by (3.18) is a U(N) gauge theory built up with six

non-Abelian scalars, Xi, i = 1, 2, 3, and Za, a = 1, 2, 3 plus two Abelian ones, r and y. The

gauge field is set to zero through the gauge fixing condition Aτ = 0. In these coordinates

the explicit symmetry of the model is reduced to (SO(3)×U(1))2. Some comments about

the relation between our Type IIB Matrix model and the Tiny Graviton Matrix theory

of [1] are now in order.

The Tiny Graviton Matrix theory of reference [1] is a U(N) gauge theory, with two

main differences from our proposal. First, the Tiny Graviton Matrix theory is built up with

eight non-Abelian scalars plus an additional fixed U(N) matrix, L5, which is introduced

in order to be able to quantize the odd Nambu brackets of the light-cone 3-sphere. This

matrix does not have a direct physical interpretation, but it allows to couple the RR 4-

form potentials in the action. Therefore, from our point of view we would expect L5 to be

related to the existence of isometric directions in the background, since in our construction

the RR 4-form potentials couple in the action contracted with the Killing vector associated

to the isometry. This is in agreement with the discussion in [32]. In this reference it is

argued that L5 has its origin in M-theory compactified in T 2. In this compactification one

of the directions is the light-cone direction, and the second one is the origin of L5 in the

– 12 –
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Type IIB theory. This idea becomes explicit in our construction. Indeed, the two isometric

directions of the Type IIB action are the direction of propagation of the gravitons and

the direction used to construct this action from the action for type IIA gravitons using T-

duality. Therefore this action is related to an M-theory action with two isometric directions.

One is the direction of propagation of the waves, in this case x−, and the other one is the

T-duality direction.

Second, the manifest symmetry of the Matrix model in [1] is the full (SO(4))2 invari-

ance of the background. Our model has the advantage of not depending on the unphysical

matrix L5 but at the expense of losing the full symmetry of the background.

The differences between the two models become more evident when one looks at their

vacuum solutions, as we do in the next subsection. We will see however that both models

support fuzzy 3-sphere solutions with the right scaling of the radius with the light-cone

momentum in the large N limit.

3.4 The fuzzy sphere solutions

A non-trivial check of the correctness of our Matrix model (3.18) is that it supports fuzzy

3-sphere solutions which agree exactly, in the limit of large number of gravitons, with

the classical 3-spheres of [6, 22]. Note that the 3-sphere giant graviton expanding in the

spherical part of the geometry [6] and the one expanding in the AdS part [7, 33] of the

AdS5 × S5 spacetime are mapped under Penrose limit into the same type of solution, a

fact that is reflected in the action through the Z2 symmetry r ↔ y, X ↔ Z. Therefore we

only need to study in detail one of the two solutions.

Let us consider for instance the dual giant graviton solution, i.e. the one expanding

into the (Penrose limit of the) AdS part of the geometry.

Our fuzzy 3-sphere ansatz is given by:

r = constant , y = Za = 0 , a = 1, 2, 3 , Xi =
1√

N2 − 1
J i , i = 1, 2, 3 , (3.19)

where J i are SU(2) generators in an N dimensional representation (in our conventions

[J i, Jj ] = 2iεijkJk). That is, we define the fuzzy 3-sphere as an S1 bundle over a fuzzy

2-sphere . Substituting this ansatz in (3.18) we get

S =
N

R

∫

dx+ r2

2

(

µ − r2R

4
√

N2 − 1

)2
. (3.20)

Since our configuration is static the Hamiltonian is just minus the Lagrangian, and we

can compare directly (3.20) with the classical Hamiltonian of [22], which is given in our

notation by [10]

H = −p−
r2

2

(

µ +
2π2T3r

2

p−

)2
. (3.21)

We find that both expressions agree exactly in the large N limit, once we take into account

that T3 = (8π2)−1, in units in which T1 = 1, and that we are describing the sector of the

theory with p− = −N/R. The corresponding radii of the giant graviton solutions, given by

r2 =
4µ

√
N2 − 1

R
(3.22)
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and

r2 = − µp−
2π2T3

, (3.23)

also agree exactly in this limit. This is a non-trivial check of the validity of our Matrix

model (3.18).

Note that in our construction the fuzzy 3-spheres are realized as S1 bundles over fuzzy

2-spheres. Therefore these vacua have just an explicit U(1) × SO(3) symmetry. Although

at the classical level the SO(4) covariance of the 3-sphere is still present in a non-manifest

way, the fuzzy 3-sphere consists on an Abelian fibre over a non-Abelian base manifold,

and this makes unclear how the whole SO(4) invariance can be recovered. This set-up is

however useful, because the difficulties associated to the fuzzification of odd dimensional

spheres (see [34 – 36]) are avoided by reducing the dimensionality of the fuzzy transverse

space from 3 to 2, by means of writing the 3-sphere as an S1 fibre over an S2 base manifold,

and taking only the S2 non-commutative. This can be done consistently because the action

that we use to describe the gravitons contains an explicit Abelian Killing direction which

can be identified with the direction along the fibre7.

On the other hand, the fuzzy 3-sphere vacua of the Tiny Graviton Matrix theory of [1]

are fully SO(4)-symmetric8. By adding L5 to the collection of non-commutative transverse

scalars it is possible to construct finite dimensional representations of SO(5) which can be

further reduced to N dimensional representations of SO(4). In this way the fuzzy 3-sphere

is constructed from an intermediate fuzzy 4-sphere. Comparing to our description, this

construction circumvents the difficulties associated to the fuzzification of the 3-sphere by

increasing by one the dimensionality of the fuzzy space, which is precisely the role played

by the matrix L5.

Another difference between the fuzzy 3-sphere vacua of [1] and the ones constructed

in this paper is that, although the solutions in [1] have the correct scaling of the radius

with the momentum in the large N limit, some non-commutativity still remains (see [34 –

36]). This is however not the case for the fuzzy 3-sphere solution constructed in this

paper, which approaches neatly the classical 3-sphere in the large N limit, where all the

non-commutativity disappears.

4. Conclusions

Using the action for coincident Type IIA gravitons constructed in [25, 3] 9 we have re-

produced Matrix String theory in the pp-wave background that is obtained by reducing

the maximally supersymmetric pp-wave background of M-theory [13, 14]. We have also

clarified how in the Matrix model approach the fuzzy 2-sphere solutions of [30], with non-

vanishing x4 position in the transverse space, emerge when D0-brane charge is induced in

the configuration.

7In this paper we have identified it with the combination (χ + χ̃)/2 in order to have a matrix model

which is symmetric under the interchange of the two R
4 subspaces of the background.

8See also [34 – 36].
9And completed in this paper in order to describe the pp-wave background.
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In the Type IIB case we have started from the action describing coincident Type IIB

gravitons of [23]. This action is connected by duality to the action for non-Abelian D-branes

constructed in [27], and has been successfully used in the microscopical description of giant

gravitons in AdS5 × S5 [23]. Using this action we have made a proposal for a pp-wave

Matrix model which supports fuzzy 3-sphere vacuum solutions with the right behavior in

the large N limit.

Our Matrix model is a one dimensional gauge theory which could be a candidate

for the holographic description of strings in the pp-wave background. Indeed, x+, which

parametrizes the conformal boundary of the pp-wave [37], is its time direction, and the

matrix model is compactified along x−.

As we have mentioned there is a second candidate for this holographic description10,

which is the Tiny Graviton Matrix theory of [1]. We have already mentioned some differ-

ences between the two constructions. On one hand our Matrix model does not depend on

the matrix L5, which lacks a direct physical interpretation, however this happens at the

expense of losing the explicit SO(4)×SO(4) symmetry of the transverse space, and of the

Matrix model in [1]. This is related to the fact that L5 is associated to an isometry of

the background. Since we have made this isometry explicit in our construction we have

reduced the size of the symmetry group.

The existence of these two different Matrix models for the Type IIB pp-wave back-

ground could be related to the fact that there is no unique way to quantize diffeomorphisms

in a 3-sphere. Therefore one could expect different gauge theories with the right continuum

limit. A possible connection between the two Matrix models, that would be interesting to

check, is whether our Matrix model can be derived in the approach of [1] by first writing

the 3-spheres in the transverse space as U(1) fibres over S2 base manifolds, and then quan-

tizing only the Nambu brackets associated to the three transverse scalars building up each

2-sphere, which would now be even dimensional.

Finally, we would like to mention that we have only constructed the bosonic parts of

the Type II Matrix models, and that it would be interesting to check their supersymmetry

properties. Our starting point, the actions for Type II gravitons, are connected by dualities

to (non-Abelian) D-brane actions, for which supersymmetry has been studied (see [42, 43]).

Using dualities it should be possible to construct the fermionic parts of these actions.

Moreover, since the pp-wave backgrounds are linear perturbations to Minkowski we could

use the results in [44]. In the Type IIB case we do not expect however that the invariance

under the whole P SU(2|2)×P SU(2|2)×U(1) superalgebra of the pp-wave background [45]

will be manifest, due to the explicit breaking SO(4) → SO(3) × U(1) of our construction.
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